
Знайдіть 2 числа якщо їх півсума = 71 а піврізниця = 31


Ответы на вопрос

Ответ:
перше число 102, друге 40




Нехай два числа будуть позначені як x і y.
За даними умовами задачі, маємо такі рівняння:
(x + y) / 2 = 71 ... (1) (півсума = 71) (x - y) / 2 = 31 ... (2) (піврізниця = 31)
Для розв'язання цих рівнянь ми можемо скласти систему рівнянь. Для цього подвоїмо обидві частини другого рівняння:
x - y = 62 ... (3)
Тепер ми маємо систему рівнянь (1) і (3):
(x + y) / 2 = 71 x - y = 62
Можна вирішити цю систему рівнянь методом підстановки або методом елімінації. Давайте скористаємося методом елімінації.
Перепишемо (3) у вигляді x = y + 62 і підставимо його в (1):
(y + 62 + y) / 2 = 71
(2y + 62) / 2 = 71
2y + 62 = 142
2y = 142 - 62
2y = 80
y = 80 / 2
y = 40
Підставимо значення y = 40 в (3):
x - 40 = 62
x = 62 + 40
x = 102
Таким чином, два числа, які задовольняють умовам задачі, це 102 і 40.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili