
ПОМОГИТЕ ПОЖАЛУЙСТА Обчислити об’єм тіла, утвореного обертанням навколо осі ОХ фігури, яка
обмежена лініями: y = x^2 – 4; y = 0.

Ответы на вопрос

См. график




Щоб обчислити об'єм тіла, утвореного обертанням фігури навколо осі ОХ, ми можемо скористатися формулою об'єму циліндра. Але перш за все, нам потрібно знайти межі інтегрування для x.
Запишемо рівняння кривої y = x^2 - 4 і рівняння y = 0:
x^2 - 4 = 0
x^2 = 4
x = ±2
Отже, наше x змінюється від -2 до 2.
Тепер ми можемо обчислити об'єм, використовуючи формулу об'єму циліндра:
V = ∫[a,b] πy^2 dx
де a і b - межі інтегрування, в нашому випадку -2 і 2.
V = ∫[-2,2] π(x^2 - 4)^2 dx
Тепер виконаємо обчислення:
V = π∫[-2,2] (x^2 - 4)^2 dx
= π∫[-2,2] (x^4 - 8x^2 + 16) dx
= π[1/5 x^5 - 8/3 x^3 + 16x]│[-2,2]
= π[(1/5 * 2^5 - 8/3 * 2^3 + 16 * 2) - (1/5 * (-2)^5 - 8/3 * (-2)^3 + 16 * (-2))]
= π[(32/5 - 64/3 + 32) - (32/5 + 64/3 - 32)]
= π[(32/5 - 32/5) + (-64/3 + 64/3) + (32 - 32)]
= π[0 + 0 + 0]
Отже, об'єм тіла, утвореного обертанням навколо осі ОХ даної фігури, дорівнює 0.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili