Вопрос задан 07.07.2023 в 02:35. Предмет Математика. Спрашивает Кузьменко Аня.

Решите уравнение: корень из x+2 минус корень из 2x-3=1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Веренич Кристина.

Ответ:

Пошаговое объяснение:

Решение

(2x+1)^0,5=2*x^0,5-(x-3)^0,5

2x^0,5=(2x+1)^0,5+(x-3)^0,5

4x=2x+1+x-3+2*((2x+1)(x-3))^0,5

x+2=2*((2x+1)(x-3))^0,5

x^2+4x+4=4(2x^2-5x-3)

7x^2-24x-16=0;

D=144+16*7=256.

x=(12+/-16)/7

корень 4 подойдёт, а второй меньше 0, он плохой

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим данное уравнение:

√(x + 2) - √(2x - 3) = 1

Сначала перенесем второй корень на другую сторону уравнения:

√(x + 2) = √(2x - 3) + 1

Теперь возведем обе стороны уравнения в квадрат, чтобы избавиться от корней:

(x + 2) = (2x - 3) + 2√(2x - 3) + 1

Разрешим уравнение относительно √(2x - 3):

2√(2x - 3) = x + 2 - (2x - 3 + 1) 2√(2x - 3) = -x

Теперь возводим обе стороны уравнения в квадрат ещё раз:

4(2x - 3) = x^2

Упростим:

8x - 12 = x^2

Перенесем все члены в одну сторону:

x^2 - 8x + 12 = 0

Теперь давайте попробуем решить это квадратное уравнение. Можно попробовать разложение на множители или использовать квадратное уравнение. Похоже, что это уравнение не разлагается на целочисленные множители, поэтому воспользуемся квадратным уравнением:

x = (-b ± √(b^2 - 4ac)) / 2a

В данном случае a = 1, b = -8 и c = 12:

x = (8 ± √((-8)^2 - 4 * 1 * 12)) / (2 * 1) x = (8 ± √(64 - 48)) / 2 x = (8 ± √16) / 2 x = (8 ± 4) / 2

Таким образом, получаем два возможных решения:

x1 = (8 + 4) / 2 = 6 x2 = (8 - 4) / 2 = 2

Итак, уравнение имеет два корня: x = 6 и x = 2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос