
13.Площа бічної поверхні конуса втричі більша від площі основи. Знайти об’єм конуса, якщо радіус
основи 2 см.

Ответы на вопрос

Ответ:
Пошаговое объяснение ====================




Давайте позначимо площу бічної поверхні конуса як S_b, площу основи як S_o, радіус основи як r і об'єм конуса як V.
За умовою задачі маємо: S_b = 3 * S_o.
Формула для площі бічної поверхні конуса: S_b = π * r * l,
де l - обернена висота бічної поверхні конуса.
Формула для площі основи конуса: S_o = π * r^2.
Підставимо значення площі основи у рівняння для площі бічної поверхні: S_b = 3 * S_o, π * r * l = 3 * π * r^2, l = 3 * r.
Також, можемо виразити об'єм конуса через радіус основи і висоту: V = (1/3) * π * r^2 * h,
де h - висота конуса.
Знаючи, що l = 3 * r, можемо виразити висоту конуса через обернену висоту бічної поверхні: h = l / 3 = (3 * r) / 3 = r.
Підставимо значення висоти у формулу для об'єму: V = (1/3) * π * r^2 * r, V = (1/3) * π * r^3.
Тепер можемо підставити значення радіусу основи (r = 2 см) у формулу для об'єму: V = (1/3) * π * (2 см)^3, V = (1/3) * π * 8 см^3, V = (8/3) * π см^3.
Отже, об'єм конуса становитиме приблизно (8/3) * π кубічних сантиметрів.


Похожие вопросы
Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili