Вопрос задан 05.07.2023 в 18:39. Предмет Математика. Спрашивает Янушкевич Маша.

Первый дворник может убрать территорию на 2 часа быстрее второго. Сколько потребуется времени на

уборку территории первому дворнику, если вдвоем два дворника убирают весь двор за 1 1/3 часа?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Данилович Анастасия.

Ответ:

1/3 часа нужно первому дворнику на уборку территории.

Пошаговое объяснение:

Пусть 1-й дворник убирает территорию за х ч., тогда второму нужно (х+2) ч. Уравняем  сумму их раздельного времени с удвоенным временем совместной уборки:

х+(х+2)=2×(1 1/3)  

2х=(2 2/3)-2  

2х=2/3  

х=(2/3):2=(2/3)×(1/2)

х=1/3 ч. - нужно первому дворнику на уборку.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим скорость работы первого дворника как "1/x", где "x" - это количество времени (в часах), которое первому дворнику потребуется для уборки территории самостоятельно. Таким образом, скорость работы второго дворника будет "1/(x+2)", так как он работает на 2 часа медленнее.

Зная скорости работы, мы можем составить уравнение на основе времени, которое требуется для уборки всей территории вдвоем:

1/x + 1/(x+2) = 1/(4/3).

Разделим обе стороны на общий знаменатель и упростим:

3/3 * (1/x) + 3/3 * (1/(x+2)) = 3/4, 3/x + 3/(x+2) = 3/4.

Умножим обе стороны на 4x(x+2), чтобы избавиться от дробей в знаменателях:

12(x+2) + 12x = 3x(x+2).

Раскроем скобки:

12x + 24 + 12x = 3x^2 + 6x.

Соберем все члены в одной стороне уравнения:

0 = 3x^2 - 18x - 24, 3x^2 - 18x - 24 = 0.

Разделим обе стороны на 3:

x^2 - 6x - 8 = 0.

Теперь решим квадратное уравнение. Мы можем либо факторизовать его, либо воспользоваться квадратным корнем. Давайте воспользуемся квадратным корнем:

x = (-b ± √(b^2 - 4ac)) / 2a.

Для нашего уравнения a = 1, b = -6 и c = -8:

x = (6 ± √((-6)^2 - 4 * 1 * -8)) / (2 * 1), x = (6 ± √(36 + 32)) / 2, x = (6 ± √68) / 2, x = (6 ± 2√17) / 2.

Таким образом, у нас есть два возможных значения для "x":

  1. x = (6 + 2√17) / 2,
  2. x = (6 - 2√17) / 2.

Поскольку время не может быть отрицательным, рассмотрим только положительное значение:

x = (6 + 2√17) / 2 ≈ 4.37.

Таким образом, первому дворнику потребуется примерно 4.37 часов для уборки территории самостоятельно.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос