
Точка S делит отрезок AB в отношении 3∶2, считая от точки A. Точка M – произвольная точка
плоскости. Вектор MS разложи по векторам MA и MB

Ответы на вопрос

Ответ:
воооооот ответ ...............




Ответ:
Пошаговое объяснение:




Давайте рассмотрим данную ситуацию. У нас есть отрезок AB, который разделен точкой S в отношении 3:2, где 3 части приходятся на отрезок AS, а 2 части на отрезок SB. Мы хотим разложить вектор MS по векторам MA и MB.
Для начала, давайте найдем вектор AB (вектор направленный от A к B). Это можно сделать, вычтя координаты точки A из координат точки B:
AB = B - A
Затем, разложим вектор MS по векторам MA и MB. Воспользуемся свойством разложения вектора по линейной комбинации других векторов:
MS = x * MA + y * MB
Где x и y - коэффициенты, которые мы хотим найти.
Поскольку мы хотим разложить вектор MS, начинающийся в точке M, то мы можем записать:
MS = S - M
Таким образом, у нас есть система уравнений:
S - M = x * MA + y * MB B - A = 3/2 * AS B - S = 2/2 * SB
Здесь AS = S - A, а SB = B - S.
Мы можем решить эту систему уравнений относительно x и y, затем использовать найденные значения для разложения вектора MS по векторам MA и MB.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili