
|3x-6|+|2-4x|+|x-5|=7


Ответы на вопрос

Ответ:
х=8
Пошаговое объяснение:
х-4×1+|x-5|=7
x+|x-5|=7+4
x+|x-5|=11
x=8



To solve the absolute value equation |3x - 6| + |2 - 4x| + |x - 5| = 7, we need to consider different cases based on the sign of the expressions within the absolute value bars. Let's break down the equation into these cases and solve for x in each case:
Case 1: 3x - 6 is non-negative, 2 - 4x is non-negative, x - 5 is non-negative In this case, we can remove the absolute value bars without changing the sign:
3x - 6 + 2 - 4x + x - 5 = 7 Combine like terms: 0x - 9 = 7 This is not possible, so there are no solutions in this case.
Case 2: 3x - 6 is non-negative, 2 - 4x is non-negative, x - 5 is negative Here, we need to negate the expression inside the last absolute value:
3x - 6 + 2 - 4x - (x - 5) = 7 Simplify: 0x + 1 = 7 This leads to a contradiction, so there are no solutions in this case.
Case 3: 3x - 6 is non-negative, 2 - 4x is negative, x - 5 is non-negative Negate the expression inside the second absolute value:
3x - 6 - (2 - 4x) + x - 5 = 7 Simplify: 8x - 13 = 7 8x = 20 x = 2.5
Case 4: 3x - 6 is non-negative, 2 - 4x is negative, x - 5 is negative Negate both expressions inside the second and third absolute values:
3x - 6 - (2 - 4x) - (x - 5) = 7 Simplify: 6x + 1 = 7 6x = 6 x = 1
Case 5: 3x - 6 is negative, 2 - 4x is non-negative, x - 5 is non-negative Negate the expression inside the first absolute value:
-(3x - 6) + 2 - 4x + x - 5 = 7 Simplify: -3x + 4x - x = 20 0x = 20 This is not possible, so there are no solutions in this case.
Case 6: 3x - 6 is negative, 2 - 4x is non-negative, x - 5 is negative Negate both expressions inside the first and third absolute values:
-(3x - 6) + 2 - 4x - (x - 5) = 7 Simplify: -3x + 4x + x = 20 2x = 20 x = 10
Case 7: 3x - 6 is negative, 2 - 4x is negative, x - 5 is non-negative Negate the expression inside the first absolute value:
-(3x - 6) - (2 - 4x) + x - 5 = 7 Simplify: -3x + 4x - x = 20 0x = 20 This is not possible, so there are no solutions in this case.
Case 8: 3x - 6 is negative, 2 - 4x is negative, x - 5 is negative Negate all expressions inside the absolute values:
-(3x - 6) - (2 - 4x) - (x - 5) = 7 Simplify: -3x + 4x + x = 20 2x = 20 x = 10
After considering all cases, we have found two solutions: x = 2.5 and x = 10. These are the values of x that satisfy the original equation.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili