
Вопрос задан 03.07.2023 в 18:44.
Предмет Математика.
Спрашивает Шапаниди Кристина.
Докажите что сумма двузначного числа записанного теми же цифрами в обратном порядке кратно 11


Ответы на вопрос

Отвечает Кузьмина Наталья.
//////////////////////////////////




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Давайте рассмотрим произвольное двузначное число, представленное как AB, где A - старший разряд (десятки), а B - младший разряд (единицы).
Число AB можно записать в виде 10A + B. Также мы можем записать обратное ему число BA как 10B + A.
Сумма чисел AB и BA будет:
AB + BA = (10A + B) + (10B + A) = 11A + 11B = 11(A + B).
Мы видим, что сумма этих двух чисел является произведением числа 11 и некоторого целого числа (A + B). Это означает, что сумма AB и BA кратна 11.
Таким образом, мы доказали, что для любого двузначного числа AB его сумма с числом, записанным теми же цифрами в обратном порядке (BA), кратна 11.


Похожие вопросы

Математика 10

Математика 66
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili