
Вопрос задан 03.07.2023 в 16:07.
Предмет Математика.
Спрашивает Хаджимуратова Гульназ.
Пожалуйста, помогите решить интеграл! Не понимаю, для произведения под интегралом есть какая-то
своя формула?

Ответы на вопрос

Отвечает Верещагина Катя.
Решение:
Внесем под дифференциал. Тогда:
Возвращаем замены:
Ответ:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Конечно, я помогу вам! Для решения интегралов с произведением функций под интегралом существует несколько методов, включая метод интегрирования по частям.
Формула интегрирования по частям:
где и - это две функции, которые вы выбираете, а и - их дифференциалы.
Шаги для применения метода интегрирования по частям:
- Выберите и . Обычно выбирают так, чтобы его дифференциал был простым, а для выбирают остальную часть выражения.
- Вычислите и (интеграл от ).
- Подставьте значения , , и в формулу интегрирования по частям.
- Решите получившийся интеграл.
Если вы предоставите конкретный интеграл, который вы хотите решить, то я с удовольствием помогу вам применить метод интегрирования по частям для его решения!


Похожие вопросы
Топ вопросов за вчера в категории Математика

Математика 12

Математика 60

Математика 771

Математика 65

Математика 23
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili