Вопрос задан 03.07.2023 в 05:27. Предмет Математика. Спрашивает Чигрин Аркадий.

. В какой точке график линейной функции y=-ax+7 пересекает ось абсцисс, если графики уравнений

,x-2y=-10 , 3x+8y=12 , ax+y=7 пересекаются в одной точке?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гайнигалимов Данис.

Ответ:

-1

Пошаговое объяснение:

Найдем точку пересечения графиков, решив систему уравнений

х-2у=-10  |   x=2y-10   и подставим во 2-е уравнение

3х+8у=12|   3*(2у-10)+8у=12.    6у-30+8у=12.  14у=42.  у=3. х=6-10=-4. Подставим эти значения в 3-е уравнение -4а+3=7.-4а=4.  а=-1

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения точки пересечения графика линейной функции y = -ax + 7 с осью абсцисс (x-осью), нужно найти значение x, когда y равно нулю.

Подставим y = 0 в уравнение y = -ax + 7: 0 = -ax + 7

Теперь решим это уравнение относительно x: ax = 7 x = 7/a

Таким образом, график функции y = -ax + 7 пересекает ось абсцисс в точке (7/a, 0).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос