Вопрос задан 02.07.2023 в 13:48. Предмет Математика. Спрашивает Koval Xristina.

Произведение двух чисел равно 4107. Наибольший общий делитель двух этих чисел равен 37. Найди

наибольшее число.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кашина Дарья.

Ответ: 111

Пошаговое объяснение:..

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим два числа как aa и bb, так что a×b=4107a \times b = 4107. Мы знаем, что наибольший общий делитель (НОД) равен 37.

Из этой информации, мы можем записать следующее:

a×b=4107a \times b = 4107 НОД(a,b)=37НОД(a, b) = 37

Если aa и bb имеют наибольший общий делитель 37, это означает, что они делятся на 37 без остатка.

Таким образом, у нас есть несколько вариантов для aa и bb:

  1. a=37a = 37 и b=4107/37=111b = 4107/37 = 111.
  2. a=111a = 111 и b=4107/111=37b = 4107/111 = 37.

Оба варианта дают одинаковое наибольшее число, которое равно 111.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос