
Y'+y/2x =x^2, y(1)=1


Ответы на вопрос

Ответ:
Пошаговое объяснение:
Найдем сначала общее решение дифференциального уравнения
Чтобы найти частное решение, надо решить уравнение
Подставим вместо с это значение и получим решение



This is a first-order linear ordinary differential equation, and we can solve it using an integrating factor. The equation is in the form:
To solve this equation, we'll follow these steps:
Step 1: Write the equation in standard form
Step 2: Identify the integrating factor The integrating factor () for this equation is given by the exponential of the integral of the coefficient of with respect to :
Step 3: Multiply both sides of the equation by the integrating factor
Step 4: Recognize the left side as the derivative of
Step 5: Integrate both sides
Step 6: Solve for
Step 7: Use the initial condition to solve for Given the initial condition , we can substitute it into the equation:
So, the solution to the initial value problem is: