Вопрос задан 02.07.2023 в 01:24.
Предмет Математика.
Спрашивает Дашевский Виталий.
Сколько корней имеет уравнение 7х∧2-25х-12=0 1)0 2)1 3)2 4)3
Ответы на вопрос
Отвечает Патрина Диана.
Ответ:
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для определения количества корней уравнения можно воспользоваться дискриминантом. Дискриминант квадратного уравнения ax^2 + bx + c = 0 вычисляется по формуле D = b^2 - 4ac.
В данном уравнении у нас есть a = 7, b = -25 и c = -12. Подставим их в формулу:
D = (-25)^2 - 4 * 7 * (-12) = 625 + 336 = 961.
Теперь, сравнивая значение дискриминанта с нулем, можно сделать выводы о количестве корней:
- Если D > 0, то уравнение имеет два различных корня.
- Если D = 0, то уравнение имеет один корень (корень кратности 2).
- Если D < 0, то уравнение не имеет действительных корней (имеет два комплексных корня).
В данном случае D = 961 > 0, следовательно, уравнение имеет два различных корня. Ответ: 3) 2 корня.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
