
1)√-x=4 2)√x=-4 3)√x^2=16


Ответы на вопрос

1. -16
2. нет решения
3.16



Let's solve each of these equations:
- √(-x) = 4
To solve this equation, we need to isolate x. First, square both sides to get rid of the square root:
(√(-x))^2 = 4^2
-x = 16
Now, multiply both sides by -1 to isolate x:
x = -16
So the solution to the first equation is x = -16.
- √x = -4
This equation has no real solutions because the square root of a real number is always non-negative, and -4 is a negative number. Therefore, there are no real values of x that satisfy this equation.
- √(x^2) = 16
Here, we have the square root of x^2, which is simply the absolute value of x:
|x| = 16
To find the solutions, we consider two cases:
Case 1: x is positive
If x is positive, then |x| is equal to x:
x = 16
Case 2: x is negative
If x is negative, then |x| is equal to -x:
-x = 16
Now, multiply both sides of the equation by -1 to isolate x:
x = -16
So, there are two solutions for this equation:
x = 16 and x = -16.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili