Вопрос задан 28.06.2023 в 15:32. Предмет Математика. Спрашивает Кокорина Екатерина.

Первое число в 1,6 раза меньше второго. Если к первому числу прибавить (–6,2), а ко

второму прибавить (–10,7), то получатся одинаковые результаты. Найди эти чи
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хакимьянова Эвелина.

Ответ:

Пошаговое объяснение:

x + (-6,2) = 1,6x + (-10,7)

x - 6,2 = 1,6x - 10,7

1,6x - x = 10,7 - 6,2

0,6x = 4,5

x = 4,5 : 0,6

x = 7,5 первое число

7,5*1,6 = 12 второе число

0 0
Отвечает Ретунская Виктория.

Ответ:

x + ( - 6.2) = 1.6x + ( - 10.7)

x - 6.2 = 1.6x - 10.7

1.6x - x = 10.7 - 6.2

0.6x = 4.5

x = 4.5 \div 0.6

x = 7.5

7.5 \times 1.6 = 12

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим первое число как x, а второе как y.

Условие гласит, что "первое число в 1,6 раза меньше второго", что можно записать следующим образом:

x = 1.6y

Также из условия известно, что "если к первому числу прибавить (–6,2), а ко второму прибавить (–10,7), то получатся одинаковые результаты", что можно записать следующим образом:

x + (-6.2) = y + (-10.7)

Теперь у нас есть система двух уравнений с двумя неизвестными:

  1. x = 1.6y
  2. x - 6.2 = y - 10.7

Мы можем решить эту систему методом подстановки. Из первого уравнения выразим x:

x = 1.6y

Теперь подставим это выражение во второе уравнение:

1.6y - 6.2 = y - 10.7

Теперь выразим y:

0.6y = -10.7 + 6.2 0.6y = -4.5

Теперь разделим обе стороны на 0.6, чтобы найти значение y:

y = -4.5 / 0.6 y = -7.5

Теперь, когда мы знаем значение y, можем найти значение x, используя первое уравнение:

x = 1.6y x = 1.6 * (-7.5) x = -12

Итак, первое число равно -12, а второе число равно -7.5.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос