
Вероятность и статистика 6. В кувшине 5 белых и 3 черных шара. Случайно возьмите один шар из
кувшина, верните его в кувшин и снова случайным образом выньте один шар. А. Какова вероятность того, что оба раза вынули белый шар? Б. Какова вероятность того, что выпущенные оба раза пули были одного цвета? (1) Какова вероятность того, что первый вынутый ими шар был белым, а второй - черным? (2) Какова вероятность того, что из двух вынутых ими пуль ровно одна черная? Заранее спасибо

Ответы на вопрос

Ответ:
Пошаговое объяснение:
а) вероятность вынуть первый белый равна 5/8 ,поскольку шар возвращается, число шаров не меняется и вероятность остается для каждого шара во втором выборе такой же. значит вытащить второй белый шар тоже 5/8 ,а вероятность вытащить оба белдых шара
5*5/(8*8)=25/64 два белых.
б) вытащить черный шар 3/8 ,а два черных 3/8*3/8=9/64
вытащить два шара одного цвета вероятность равна сумме вероятностей 9/64+25/64=34/64=17/32
Вероятность вытащить два шара одного цвета равна 17/32
Первый белым,а второй черным равна 5/8*3/8=15/64
Ровно один шар черный - отнимаем от 1 вариант вариант, когда оба шара одного цвета
1-17/32=15/32



Давайте рассмотрим каждый из ваших вопросов:
А. Вероятность того, что оба раза вынули белый шар:
Есть 5 белых шаров и 8 (5 белых и 3 черных) всего шаров в кувшине. Вероятность вытащить белый шар при первом вытаскивании равна 5/8, так как у нас есть 5 белых шаров из 8 всего. После возвращения шара в кувшин, вероятность вытащить белый шар при втором вытаскивании также равна 5/8.
Чтобы найти вероятность обоих событий, перемножим вероятности:
(5/8) * (5/8) = 25/64.
Итак, вероятность того, что оба раза вынули белый шар, равна 25/64.
Б. Вероятность того, что выпущенные оба раза шара были одного цвета:
Чтобы оба раза вытащить шар одного цвета, есть два варианта: или оба раза белые или оба раза черные. Мы уже нашли вероятность того, что оба раза вынули белый шар (25/64) в пункте А. Теперь найдем вероятность того, что оба раза вынули черный шар.
Вероятность вытащить черный шар при первом вытаскивании равна 3/8 (3 черных из 8 всего). После возвращения шара в кувшин, вероятность вытащить черный шар при втором вытаскивании также равна 3/8.
Чтобы найти вероятность обоих событий, перемножим вероятности:
(3/8) * (3/8) = 9/64.
Итак, вероятность того, что выпущенные оба раза шара были одного цвета, равна сумме вероятности обоих вариантов:
(25/64) + (9/64) = 34/64 = 17/32.
Итак, вероятность того, что выпущенные оба раза шара были одного цвета, равна 17/32.
- Вероятность того, что первый вынутый шар был белым, а второй - черным:
Вероятность вытащить белый шар при первом вытаскивании равна 5/8 (как в пункте А), а вероятность вытащить черный шар при втором вытаскивании равна 3/8 (как в пункте Б).
Чтобы найти вероятность обоих событий, перемножим вероятности:
(5/8) * (3/8) = 15/64.
Итак, вероятность того, что первый вынутый шар был белым, а второй - черным, равна 15/64.
- Вероятность того, что из двух вынутых шаров ровно один черный:
Это можно разбить на два случая: сначала вынуть белый, а потом черный, и наоборот.
Вероятность первого случая:
(5/8) * (3/8) = 15/64 (как в пункте 1).
Вероятность второго случая:
(3/8) * (5/8) = 15/64 (обратный случай).
Чтобы найти вероятность ровно одного черного шара, сложим вероятности обоих случаев:
(15/64) + (15/64) = 30/64 = 15/32.
Итак, вероятность того, что из двух вынутых шаров ровно один черный, равна 15/32.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili