Log2(x+4)+log2(5-x)=3
Ответы на вопрос
        Ответ:
Пошаговое объяснение:
log₂(x+4)+log₂(5-x)=3
сразу находим ООФ (x+4) >0 x > -4
(5-x) > 0 x < 5
x ∈ (-4; 5)
log₂((x+4)(5-x))=3
2³ = (x+4)(5-x)
5x-x²+20-4x=8
x² -x -12 = 0⇒ x₁ = 4; x₂= -3
оба корня лежат внутри промежутка (-4; 5)
x₁,x₂ ∈(-4; 5)
ответ
x₁ = 4; x₂= -3
            To solve the equation log2(x + 4) + log2(5 - x) = 3, you can use logarithmic properties to simplify it and find the value of x. Here are the steps:
Combine the two logarithms on the left side using the product rule of logarithms:
log2((x + 4)(5 - x)) = 3
Now, remove the logarithm by using the definition of logarithms. When the logarithm base is 2, you can rewrite the equation as:
(x + 4)(5 - x) = 2^3
Simplify the equation:
(x + 4)(5 - x) = 8
Expand the left side of the equation:
5x - x^2 + 20 - 4x = 8
Combine like terms:
5x - x^2 - 4x + 20 = 8
Simplify further:
x^2 - 9x + 20 = 8
Subtract 8 from both sides:
x^2 - 9x + 20 - 8 = 0
Combine constants:
x^2 - 9x + 12 = 0
Factor the quadratic equation:
(x - 3)(x - 4) = 0
Set each factor equal to zero and solve for x:
x - 3 = 0 or x - 4 = 0
x = 3 or x = 4
So, the solutions to the equation are x = 3 and x = 4. You should check both solutions to ensure they are valid by plugging them back into the original equation, as logarithms are only defined for positive values:
For x = 3: log2(3 + 4) + log2(5 - 3) = log2(7) + log2(2) = 3 + 1 = 4 (valid)
For x = 4: log2(4 + 4) + log2(5 - 4) = log2(8) + log2(1) = 3 + 0 = 3 (valid)
Both solutions are valid for the given equation.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			