
3|х+2|+2|х+2|=5; help


Ответы на вопрос

Ответ:
3|x+2|+2|x+2|=5
5|x+2|=5
|x+2|=1
x+2=1 x=1-2 x=-1
x+2=-1 x=-1-2 x=-3



To solve the equation , you can follow these steps:
Start by isolating one of the absolute value terms. You can choose either or . Let's choose :
Subtract from both sides:
Now, you have two cases to consider, depending on the sign of :
Case 1: is non-negative ():
In this case, the absolute value becomes unnecessary, so you can rewrite the equation as:
Solve for :
Combine like terms:
Subtract 10 from both sides:
Divide by 5:
So, is a solution in this case.
Case 2: is negative ():
In this case, the absolute value changes the sign, so you can rewrite the equation as:
Solve for :
Combine like terms:
Add to both sides:
Subtract 1 from both sides:
Divide by -1 (which is the same as multiplying by -1):
So, is a solution in this case.
Now you have two potential solutions: and . You should check both solutions by plugging them back into the original equation to ensure they satisfy it:
For :
For :
Both solutions satisfy the original equation, so the solutions are and .


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili