Вопрос задан 26.06.2023 в 17:11. Предмет Математика. Спрашивает Квасина Анастасия.

При каких значениях k и b гипербола y=k/x и прямая y = kx + b проходят через точку A(2;5)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сорокин Артем.

Дано:

Гипербола у = k/x

Прямая у = kх + b

Точка пересечения А(2; 5)

Найти:

Значения коэффициентов k и b

Решение:

Подставим значения координат точки А в уравнение гиперболы

5 = k/2  ⇒  k = 10

Подставим  k = 10 и значения координат точки А в уравнение прямой

5 = 10 · 2 + b    ⇒   b = -15

Ответ:

k = 10;   b = - 15

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы гипербола y=kxy = \frac{k}{x} и прямая y=kx+by = kx + b прошли через точку A(2;5)A(2;5), значение yy должно быть одинаковым на обеих кривых при x=2x = 2 и y=5y = 5.

  1. Для гиперболы y=kxy = \frac{k}{x}, подставим x=2x = 2 и y=5y = 5: 5=k25 = \frac{k}{2} Умножим обе стороны на 2: 10=k10 = k

  2. Для прямой y=kx+by = kx + b, также подставим x=2x = 2 и y=5y = 5: 5=2k+b5 = 2k + b

Теперь мы имеем систему уравнений:

10 &= k \\ 5 &= 2k + b \end{align*}\] Из первого уравнения получаем \(k = 10\), а затем подставляем это значение во второе уравнение: \[5 = 2 \cdot 10 + b\] Решая это уравнение, получаем: \[5 = 20 + b\] Вычитаем 20 с обеих сторон: \[b = 5 - 20\] \[b = -15\] Таким образом, значение параметра \(k\) должно быть равным 10, а значение параметра \(b\) должно быть равным -15, чтобы гипербола \(y = \frac{k}{x}\) и прямая \(y = kx + b\) прошли через точку \(A(2;5)\).
0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос