Вопрос задан 24.06.2023 в 23:25. Предмет Математика. Спрашивает Губарев Олег.

A) x2 - 8x - 33 = 0;6) 16x2 - 24x + 9 = 0;B) x2 + 4x + 5 =0 ;r) -6x2 + 5x - 1 -0.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Емцов Рома.

Ответ:

а)

11

х = - —

2

б)

9

х = - —

8

в)

5

х = - —

6

г)

х = - 7х - 1

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

It seems like you've provided two sets of quadratic equations, and you'd like to find the solutions for each set. Let's solve them one by one:

A) x^2 - 8x - 33 = 0

To solve this quadratic equation, you can use the quadratic formula:

x = (-b ± √(b² - 4ac)) / (2a)

In this equation, a = 1, b = -8, and c = -33. Plugging these values into the formula:

x = (-(-8) ± √((-8)² - 4(1)(-33))) / (2(1)) x = (8 ± √(64 + 132)) / 2 x = (8 ± √196) / 2 x = (8 ± 14) / 2

Now, you have two possible solutions:

  1. x = (8 + 14) / 2 = 22 / 2 = 11
  2. x = (8 - 14) / 2 = -6 / 2 = -3

So, the solutions to the equation x^2 - 8x - 33 = 0 are x = 11 and x = -3.

6) 16x^2 - 24x + 9 = 0

This quadratic equation appears to be a perfect square trinomial. It factors as follows:

(4x - 3)(4x - 3) = 0

Now, set each factor equal to zero:

4x - 3 = 0 4x - 3 = 0

Solve for x in each equation:

  1. 4x - 3 = 0 4x = 3 x = 3/4

So, the solution to the equation 16x^2 - 24x + 9 = 0 is x = 3/4.

B) x^2 + 4x + 5 = 0

To solve this quadratic equation, you can again use the quadratic formula:

x = (-b ± √(b² - 4ac)) / (2a)

In this equation, a = 1, b = 4, and c = 5. Plugging these values into the formula:

x = (-4 ± √(4² - 4(1)(5))) / (2(1)) x = (-4 ± √(16 - 20)) / 2 x = (-4 ± √(-4)) / 2

Since the discriminant (the value inside the square root) is negative, there are no real solutions to this equation. The solutions will be complex numbers:

x = (-4 ± 2i) / 2

Now, simplify:

  1. x = (-4 + 2i) / 2 = -2 + i
  2. x = (-4 - 2i) / 2 = -2 - i

So, the solutions to the equation x^2 + 4x + 5 = 0 are x = -2 + i and x = -2 - i.

r) -6x^2 + 5x - 1 = 0

To solve this quadratic equation, you can again use the quadratic formula:

x = (-b ± √(b² - 4ac)) / (2a)

In this equation, a = -6, b = 5, and c = -1. Plugging these values into the formula:

x = (-5 ± √(5² - 4(-6)(-1))) / (2(-6)) x = (-5 ± √(25 - 24)) / (-12) x = (-5 ± √1) / (-12)

Now, simplify:

  1. x = (-5 + 1) / (-12) = -4 / (-12) = 1/3
  2. x = (-5 - 1) / (-12) = -6 / (-12) = 1/2

So, the solutions to the equation -6x^2 + 5x - 1 = 0 are x = 1/3 and x = 1/2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос