
Sin a - sin 3a/cos a - 3a=-ctg 2a


Ответы на вопрос

Ответ:
sina-sin3a/cosa-cos3a=-ctg2a
2sin(-a)cos2a/(-2sin(-a)sin2a)=-2sinacos2a/(2sinasin2a)=-cos2a/sin2a=
=-ctg2a
-ctg2a=-ctg2a
Пошаговое объяснение:



To simplify the expression sin(a) - sin(3a) / (cos(a) - 3a) = -cot(2a), let's use trigonometric identities to manipulate it.
First, recall the trigonometric identity for the sine of the difference of two angles:
sin(A - B) = sin(A)cos(B) - cos(A)sin(B)
Now, apply this identity to the numerator:
sin(a) - sin(3a) = sin(a)cos(3a) - cos(a)sin(3a)
Now, the expression becomes:
(sin(a)cos(3a) - cos(a)sin(3a)) / (cos(a) - 3a) = -cot(2a)
Next, use the product-to-sum identities to simplify the numerator:
sin(a)cos(3a) - cos(a)sin(3a) = sin(a + 3a) = sin(4a)
Now the expression becomes:
sin(4a) / (cos(a) - 3a) = -cot(2a)
Now, let's work with the denominator. Remember that cot(2a) can be expressed as 1/tan(2a), and tan(2a) can be written as sin(2a) / cos(2a). So, the right side of the equation becomes:
-cot(2a) = -1/tan(2a) = -1 / (sin(2a) / cos(2a))
Now, rewrite the equation as:
sin(4a) / (cos(a) - 3a) = -cos(2a) / sin(2a)
To get rid of the denominators, multiply both sides of the equation by sin(2a)(cos(a) - 3a):
sin(4a) * sin(2a)(cos(a) - 3a) = -cos(2a) * (cos(a) - 3a)
Now, expand and simplify:
sin(4a) * sin(2a) * cos(a) - sin(4a) * sin(2a) * 3a = -cos(2a) * cos(a) + cos(2a) * 3a
Now, apply trigonometric identities:
sin(4a) = 2sin(2a)cos(2a) sin(2a) = 2sin(a)cos(a) cos(2a) = 2cos^2(a) - 1
Substitute these identities into the equation:
2sin(2a)cos(2a) * 2sin(a)cos(a) * cos(a) - 2sin(2a)cos(2a) * 3a = - (2cos^2(a) - 1) * cos(a) + 2cos^2(a) * 3a
Now, simplify:
4sin(a)cos^2(a)cos(2a) - 6a sin(2a)cos(2a) = -2cos(a) + cos(a) + 6a cos^2(a)
Now, apply trigonometric identities again:
sin(2a) = 2sin(a)cos(a) cos(2a) = 2cos^2(a) - 1
Substitute these identities:
4sin(a)cos^2(a)(2cos^2(a) - 1) - 6a(2sin(a)cos(a))(2cos^2(a) - 1) = -2cos(a) + cos(a) + 6a cos^2(a)
Now, simplify further:
8sin(a)cos^2(a)cos^2(a) - 4sin(a)cos^2(a) - 12a sin(a)cos^2(a)cos^2(a) + 6a sin(a)cos(a) = -2cos(a) + cos(a) + 6a cos^2(a)
Now, let's simplify and group like terms:
(8cos^4(a) - 4cos^2(a))sin(a) - (12a cos^4(a) - 6a cos^2(a))sin(a) = -cos(a) + cos(a) + 6a cos^2(a)
Factor out sin(a) on the left side:
4cos^2(a)(2cos^2(a) - 1 - 3a)sin(a) = 6a cos^2(a)
Now, divide both sides by 6a cos^2(a) to isolate sin(a):
4cos^2(a)(2cos^2(a) - 1 - 3a)sin(a) / (6a cos^2(a)) = 1
Now, simplify:
(2cos^2(a) - 1 - 3a)sin(a) / (3a cos^2(a)) = 1
This is the simplified form of the given equation.


Похожие вопросы
Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili