Вопрос задан 18.06.2023 в 15:11. Предмет Математика. Спрашивает Олар Танюша.

Чему ровен обьем красного стоительского кирпича если ширина его состовляет 24 см высота в 6 раза

меньше а длина на 1 дм больше чем высота и ширина вместе сколько см 3
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петров Вова.

Ответ:

1) 24*6=144см(высота)

2)(24+144)+10=178см(длина)

3)24*144*178=615168(объём)

Я не совсем уверен что правильно, напишите, если что

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберемся с данной задачей.

Пусть \(x\) - высота кирпича в см. Тогда ширина составляет \(24\) см, высота \(x\) см, а длина \(6x + 1\) см, так как длина на \(1\) дм больше высоты.

Объем прямоугольного параллелепипеда (кирпича) вычисляется по формуле: \(V = l \cdot w \cdot h\), где \(l\) - длина, \(w\) - ширина, \(h\) - высота.

В данном случае, объем кирпича будет равен:

\[V = (6x + 1) \cdot 24 \cdot x\]

Также, по условию задачи, ширина кирпича составляет \(24\) см, что можно записать уравнением:

\[24 = 6x + 1\]

Решим это уравнение для нахождения значения \(x\):

\[6x = 23\]

\[x = \frac{23}{6}\]

Теперь, подставим найденное значение \(x\) в формулу объема кирпича:

\[V = (6 \cdot \frac{23}{6} + 1) \cdot 24 \cdot \frac{23}{6}\]

\[V = (23 + 1) \cdot 24 \cdot \frac{23}{6}\]

\[V = 24 \cdot 24 \cdot \frac{23}{6}\]

\[V = 4 \cdot 24 \cdot 23\]

\[V = 96 \cdot 23\]

\[V = 2208\]

Таким образом, объем красного строительского кирпича составляет \(2208\) см³.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос