Вопрос задан 30.06.2018 в 04:22.
Предмет Математика.
Спрашивает Чирков Серёжа.
Четырехугольник АВСД известно что АВ=ВД=АД ВС=5 СД= 12 ВСД=30 градус найти АС
Ответы на вопрос
        Отвечает Меглин Родион.
                
     По теореме косинусов в треугольнике ВСD:
ВD²=25+144 - 2*5*12*√3/2 =169-103,9=65,1≈65.
BD ≈ 8.
По теореме косинусов в треугольнике СВD:
Cosα = (b²+c²-a²)/2bc. (α - между b и c) или в нашем случае:
CosCBD = (25+64-144)/80 = -0,687.
Значит <CBD=133° (по таблице).
<CBA=360°-60°-133°=167°
Cos167= -0,974.
В треугольнике АВС по теореме косинусов:
АС²=25+64+80*0,974 ≈ 167.
АС=√167≈ 12,9 см.
Ответ: АС=13см.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			