Вопрос задан 17.06.2023 в 17:59. Предмет Математика. Спрашивает Nurmamedova Emiliya.

Разложите выражения на множители: 1) a^2+5а+6; 2) y^2-3y -4; 3) a^2+ 8а-9; 4) x^2-11х+24 ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сергиенко Вероника.

Ответ:

а) (a+3)(a+2)

б) (y+1)(y-4)

в) (x-3)(x-8)


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Разложение выражений на множители:

1) a^2 + 5a + 6

To factorize this expression, we need to find two numbers whose product is equal to the product of the coefficient of the quadratic term (a^2) and the constant term (6), and whose sum is equal to the coefficient of the linear term (5a).

The coefficient of the quadratic term is 1, the coefficient of the linear term is 5, and the constant term is 6. We need to find two numbers whose product is (1 * 6) = 6 and whose sum is 5.

The numbers that satisfy these conditions are 2 and 3. Therefore, we can factorize the expression as follows:

a^2 + 5a + 6 = (a + 2)(a + 3)

2) y^2 - 3y - 4

To factorize this expression, we need to find two numbers whose product is equal to the product of the coefficient of the quadratic term (y^2) and the constant term (-4), and whose sum is equal to the coefficient of the linear term (-3y).

The coefficient of the quadratic term is 1, the coefficient of the linear term is -3, and the constant term is -4. We need to find two numbers whose product is (1 * -4) = -4 and whose sum is -3.

The numbers that satisfy these conditions are -4 and 1. Therefore, we can factorize the expression as follows:

y^2 - 3y - 4 = (y - 4)(y + 1)

3) a^2 + 8a - 9

To factorize this expression, we need to find two numbers whose product is equal to the product of the coefficient of the quadratic term (a^2) and the constant term (-9), and whose sum is equal to the coefficient of the linear term (8a).

The coefficient of the quadratic term is 1, the coefficient of the linear term is 8, and the constant term is -9. We need to find two numbers whose product is (1 * -9) = -9 and whose sum is 8.

The numbers that satisfy these conditions are 9 and -1. Therefore, we can factorize the expression as follows:

a^2 + 8a - 9 = (a + 9)(a - 1)

4) x^2 - 11x + 24

To factorize this expression, we need to find two numbers whose product is equal to the product of the coefficient of the quadratic term (x^2) and the constant term (24), and whose sum is equal to the coefficient of the linear term (-11x).

The coefficient of the quadratic term is 1, the coefficient of the linear term is -11, and the constant term is 24. We need to find two numbers whose product is (1 * 24) = 24 and whose sum is -11.

The numbers that satisfy these conditions are -3 and -8. Therefore, we can factorize the expression as follows:

x^2 - 11x + 24 = (x - 3)(x - 8)

These are the factorized forms of the given expressions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос