
На доске написан квадратный трёхчлен P(x). Ваня заметил, что если из P(x) вычесть x2, то
получится квадратный трёхчлен, имеющий ровно один действительный корень; если из P(x) вычесть x, то получится квадратный трёхчлен, имеющий ровно один действительный корень; если из P(x) вычесть 1, то получится квадратный трёхчлен, имеющий ровно один действительный корень. Найдите P(16).

Ответы на вопрос

Ответ:
31
Пошаговое объяснение:
Дан квадратный трехчлен P(x) = ax^2 + bx + c
Если из P(x) вычесть x2, то получится квадратный трёхчлен:
(a-1)x^2 + bx + c, имеющий ровно один действительный корень;
Если из P(x) вычесть x, то получится квадратный трёхчлен:
ax^2 + (b-1)x + c, имеющий ровно один действительный корень;
Если из P(x) вычесть 1, то получится квадратный трёхчлен:
ax^2 + bx + (c-1), имеющий ровно один действительный корень.
Найдите P(16).
Решение:
Скажу сразу - возможно, это неправильное решение, но ничего лучшего я не придумал.
Если квадратный трехчлен имеет только один действительный корень, то он представляет собой точный квадрат. Значит:
1) P(x) - x^2 = (a-1)x^2 + bx + c = (kx + p)^2 = k^2x^2 + 2kpx + p^2
2) P(x) - x = ax^2 + (b-1)x + c = (mx + n)^2 = m^2x^2 + 2mnx + n^2
3) P(x) - 1 = ax^2 + bx + (c-1) = (qx + r)^2 = q^2x^2 + 2qrx + r^2
Отсюда можно составить такую систему по степеням x:
{ a - 1 = k^2
{ a = m^2
{ a = q^2
{ b = 2kp
{ b - 1 = 2mn
{ b = 2qr
{ c = p^2
{ c = n^2
{ c - 1 = r^2
Во-первых, числа a и c являются квадратами, и одновременно числа (a - 1) и (c - 1) тоже являются квадратами.
Это может быть только в одном случае: a = c = 1.
А вот с коэффициентом b ещё сложнее.
b = 2kp = 2qr - это ещё может быть, например, 12 = 2*1*6 = 2*2*3
Но как тогда b - 1 = 2mn - тоже чётное число? Такого быть не может!
Я придумал один выход:
a = 0, то есть квадратный трехчлен P(x) на самом деле - линейный.
P(x) = 0x^2 + bx + c
Тогда P(x) - x = (b - 1)x + c имеет один корень x = -c/(b - 1)
И P(x) - 1 = bx + (c - 1) тоже имеет один корень x = -(c - 1)/b
Осталось подобрать b и c так, чтобы было:
P(x) - x^2 = -x^2 + bx + c тоже имел один действительный корень.
Ответ очевиден: b = 2; c = -1.
P(x) = 0x^2 + 2x - 1
P(x) - x^2 = -x^2 + 2x - 1 = -(x - 1)^2 имеет один корень x = 1.
P(16) = 0*16^2 + 2*16 - 1 = 0 + 32 - 1 = 31



Пусть P(x) = ax^2 + bx + c, где a, b и c - коэффициенты трехчлена.
Из условия задачи мы знаем, что если из P(x) вычесть x^2, то получится квадратный трехчлен с одним действительным корнем. Это означает, что дискриминант этого трехчлена равен нулю: b^2 - 4ac = 0. (1)
Также из условия задачи мы знаем, что если из P(x) вычесть x, то получится квадратный трехчлен с одним действительным корнем. Это означает, что дискриминант этого трехчлена равен нулю: (b - 2a)^2 - 4(a - c) = 0. (2)
Из третьего условия задачи мы знаем, что если из P(x) вычесть 1, то получится квадратный трехчлен с одним действительным корнем. Это означает, что дискриминант этого трехчлена равен нулю: (b - a)^2 - 4(a - 1)c = 0. (3)
Мы получили систему трех уравнений с тремя неизвестными (a, b и c). Решим ее:
Из уравнения (1) получаем b^2 = 4ac.
Из уравнения (2) получаем (b - 2a)^2 = 4(a - c).
Из уравнения (3) получаем (b - a)^2 = 4(a - 1)c.
Раскрываем квадраты:
b^2 - 4ab + 4a^2 = 4ac.
b^2 - 4ab + 4a^2 = 4a^2 - 4ac.
b^2 - 2ab + a^2 = 4ac - 4c.
b^2 - 2ab + a^2 = 4c(a - 1).
Замечаем, что b^2 - 2ab + a^2 = (b - a)^2.
Получаем уравнение: (b - a)^2 = 4c(a - 1).
Таким образом, уравнения (2) и (3) равносильны.
Из этого следует, что b - 2a = b - a.
Отсюда получаем, что a = 0.
Подставляем a = 0 в уравнение (1):
b^2 = 0.
Отсюда следует, что b = 0.
Таким образом, трехчлен P(x) имеет вид P(x) = c.
Подставляем P(x) = c в уравнение (3):
(0 - 0)^2 = 4(c - 1)c.
Отсюда получаем, что c = 1.
Таким образом, P(x) = 1.
Найдем значение P(16):
P(16) = 1.
Ответ: P(16) = 1.


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili