
ПОМОГИТЕ ПОЖАЛУЙСТА! ВРЕМЯ ТОЛЬКО ОДИН ЧАС! З точки M до площини B проведено перпендикуляр ML і
похилу MK. Знайдіть ML, якщо кут KML = 45°, KM = 8√2 см.

Ответы на вопрос

Пошаговое объяснение:
∠KML=45° KM=8√2 см. ML=?
Ответ: ML=8 см.



Щоб знайти довжину ML, нам потрібно використати трикутник KML. За наданими даними, ми знаємо, що кут KML дорівнює 45°, а KM має довжину 8√2 см.
Ми можемо використати тригонометричні співвідношення, зокрема тангенс, щоб знайти довжину ML. Тангенс кута KML дорівнює протилежному катету (ML) поділеному на прилеглий катет (MK).
Таким чином, ми можемо записати наше співвідношення: tan(KML) = ML / MK
Підставляючи відомі значення, ми отримуємо: tan(45°) = ML / 8√2
Тангенс 45° дорівнює 1, тому ми можемо спростити рівняння: 1 = ML / 8√2
Щоб знайти ML, ми можемо помножити обидві сторони рівняння на 8√2: 8√2 = ML
Отже, довжина ML дорівнює 8√2 см.
Надіюся, ця відповідь була корисною! Якщо у вас є ще питання, будь ласка, дайте знати.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili