
Если z=x^2−2xy+3y−1 , то значение 3√5 |градиент| в точке M0 (1;2) равна?


Ответы на вопрос

Ответ:
Пошаговое объяснение:




Calculating the Gradient at Point M0(1, 2)
To calculate the gradient at the point M0(1, 2) for the function z = x^2 - 2xy + 3y - 1, we can use the following steps:
1. Calculate the Partial Derivatives: - The gradient of a function in two variables (x, y) is given by the vector (∂z/∂x, ∂z/∂y). - Calculate the partial derivatives of z with respect to x and y.
2. Evaluate the Gradient at Point M0(1, 2): - Substitute the values x = 1 and y = 2 into the partial derivatives to find the gradient at the point M0(1, 2).
Calculation Steps
1. Calculate the Partial Derivatives: - The partial derivative of z with respect to x, denoted as ∂z/∂x, is given by the derivative of z with respect to x while treating y as a constant. - The partial derivative of z with respect to y, denoted as ∂z/∂y, is given by the derivative of z with respect to y while treating x as a constant.
The partial derivatives are: - ∂z/∂x = 2x - 2y - ∂z/∂y = -2x + 3
2. Evaluate the Gradient at Point M0(1, 2): - Substitute x = 1 and y = 2 into the partial derivatives to find the gradient at the point M0(1, 2).
Substituting x = 1 and y = 2: - ∂z/∂x = 2(1) - 2(2) = 2 - 4 = -2 - ∂z/∂y = -2(1) + 3 = -2 + 3 = 1
Therefore, the gradient at the point M0(1, 2) is given by the vector (-2, 1).
Conclusion
The value of the gradient at the point M0(1, 2) for the function z = x^2 - 2xy + 3y - 1 is (-2, 1).

Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili