Вопрос задан 15.06.2023 в 02:18. Предмет Математика. Спрашивает Макеев Артур.

[3(2x+1)>3x+1] решите неравенство ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Романова Оксана.

Ответ:

(-\frac{2}{3};+\infty)

Решение:

3(2x+1) > 3x+1\\\\6x+3 > 3x+1\\\\6x-3x > 1-3\\\\3x > -2\\\\x > -\frac{2}{3}\\\\x\in(-\frac{2}{3};+\infty)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим данное неравенство шаг за шагом:

3(2x+1) > 3x+1

Раскроем скобки:

6x + 3 > 3x + 1

Перенесём все x-термы на одну сторону, а числовые термы на другую:

6x - 3x > 1 - 3

Упростим:

3x > -2

Теперь разделим обе части неравенства на 3 (положительное число, поэтому знак сохраняется):

x > -2/3

Таким образом, решением данного неравенства является любое число x, которое больше -2/3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос