Вопрос задан 09.06.2023 в 05:24. Предмет Математика. Спрашивает Фарихова Алина.

3(x+2)-x=10 4x+3(x-7)=58=3(x-4)-x3x(x-1)+x=2x1/8-1/64 x=0-1/4x-1/2=0t×4/31=28/31​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Минаев Макс.

1) x = 2

3(x + 2) - x = 10 \\ 3x + 6 - x = 10 \\ 3x - x = 10 - 6 \\ 2x = 4 \\ x = 4 \div 2 = 2

2) x = 26/7 = 3 5/7

4x + 3(x - 7) = 5 \\ 4x + 3x - 21 = 5 \\ 7x = 5 + 21 = 26 \\ x =  \frac{26}{7}

3) x = 10

8 = 3(x  - 4) - x \\ 8 = 3x - 12 - x \\ 8 = 2x - 12 \\ 2x = 8 + 12 = 20 \\ x = 20 \div 2 = 10

4) x = 3/2

3(x - 1) + x = 2x \\ 3x  - 3 + x = 2x \\ 2x = 3 \\ x = \frac{3}{2}

5) x = 8

 \frac{1}{8}  -  \frac{1}{64} x = 0 \\  \frac{1}{8}  =  \frac{1}{64} x \\ x =  \frac{1}{8}  \div  \frac{1}{64}  =  \frac{1}{8}  \times  \frac{64}{1}  \\ x = 8

6) x = -2

 -  \frac{1}{4} x -  \frac{1}{2}  = 0 \\  -  \frac{1}{4} x =  \frac{1}{2}  \\ x =  \frac{1}{2}  \div ( -  \frac{1}{4} ) =  \frac{1}{2}  \times ( -  \frac{4}{1} ) \\ x =  - 2

7) t = 7

 t \times  \frac{4}{31}  =  \frac{28}{31}   \\  t =  \frac{28}{31}  \div  \frac{4}{31}   =  \frac{28}{31}  \times  \frac{31}{4}  \\ t = 7

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Let's solve each equation step by step:

  1. Equation 1: 3(x + 2) - x = 10

Expanding the brackets:

3x + 6 - x = 10

Combining like terms:

2x + 6 = 10

Subtracting 6 from both sides:

2x = 4

Dividing both sides by 2:

x = 2

So, the solution for Equation 1 is x = 2.

  1. Equation 2: 4x + 3(x - 7) = 58

Expanding the brackets:

4x + 3x - 21 = 58

Combining like terms:

7x - 21 = 58

Adding 21 to both sides:

7x = 79

Dividing both sides by 7:

x = 79/7

Simplifying:

x = 11.2857 (rounded to four decimal places)

So, the solution for Equation 2 is x = 11.2857.

  1. Equation 3: 3x(x - 1) + x = 2x

Expanding the brackets:

3x^2 - 3x + x = 2x

Combining like terms:

3x^2 - 2x = 2x

Subtracting 2x from both sides:

3x^2 - 4x = 0

Factoring out an x:

x(3x - 4) = 0

Using the zero-product property, we have two possibilities:

x = 0 or 3x - 4 = 0

For the second equation, adding 4 to both sides:

3x = 4

Dividing both sides by 3:

x = 4/3

So, the solutions for Equation 3 are x = 0 and x = 4/3.

  1. Equation 4: 1/8 - 1/64x - 1/2 = 0

Combining like terms, we get:

1/8 - 1/64x = 1/2

Multiplying both sides by 64x to eliminate the denominator:

8x - 1 = 32x

Subtracting 8x from both sides:

-1 = 24x

Dividing both sides by 24:

x = -1/24

So, the solution for Equation 4 is x = -1/24.

  1. Equation 5: t * 4/31 = 28/31

To isolate t, we need to divide both sides by 4/31:

t = (28/31) / (4/31)

Simplifying:

t = (28/31) * (31/4)

Canceling out the common factors:

t = 7

So, the solution for Equation 5 is t = 7.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос