Вопрос задан 07.06.2023 в 23:04. Предмет Математика. Спрашивает Кёнигсберг Милана.

Решите систему уравнений x+y=5 xy=-6

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Руденко Наташа.

решение во вложении выше

Пошаговое объяснение:

Прошу поставить лучший ответ если помогла)

.. ָ࣪  ⃝   ࣪ ˖  ぃ

꣹ ׅ ׁ ☆͟ ࣭ ✦ ๋ ָ


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной системы уравнений можно использовать метод подстановки или метод исключения переменных.

Давайте воспользуемся методом подстановки.

Исходная система уравнений:

  1. x + y = 5
  2. xy = -6

Из первого уравнения можно выразить одну переменную через другую: x = 5 - y

Подставим это значение x во второе уравнение: (5 - y)y = -6

Раскроем скобки и приведем подобные слагаемые: 5y - y^2 = -6

Полученное квадратное уравнение можно привести к стандартному виду: y^2 - 5y - 6 = 0

Теперь решим это квадратное уравнение. Можно использовать факторизацию или квадратное уравнение: (y - 6)(y + 1) = 0

Таким образом, получаем два возможных значения для y: y - 6 = 0 => y = 6 y + 1 = 0 => y = -1

Теперь найдем соответствующие значения для x, используя первое уравнение: При y = 6: x + 6 = 5 => x = -1

При y = -1: x + (-1) = 5 => x = 6

Таким образом, система имеет два решения: x = -1, y = 6 x = 6, y = -1

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос