
Вопрос задан 07.06.2023 в 18:15.
Предмет Математика.
Спрашивает Кнутова Ирина.
Обчисліть інтеграл: 1∫0(2x+1)³ dx


Ответы на вопрос

Отвечает Золотарёва Елизавета.
Щоб обчислити інтеграл ∫(2x+1)³ dx від 0 до 1, використаємо формулу для інтегрування степеневої функції:
∫xⁿ dx = (xⁿ⁺¹)/(n+1) + C,
де n ≠ -1 і C - константа інтегрування.
Застосуємо цю формулу до кожного доданка у виразі (2x+1)³:
∫(2x+1)³ dx = ∫8x³ + 12x² + 6x + 1 dx
Застосуємо формулу для кожного доданка:
∫8x³ dx = (8/4)x⁴ = 2x⁴
∫12x² dx = (12/3)x³ = 4x³
∫6x dx = 6/2)x² = 3x²
∫1 dx = x
Тепер, обчислимо відповідний вираз для кожного доданка:
∫(2x+1)³ dx = 2x⁴ + 4x³ + 3x² + x
Щоб знайти значення від 0 до 1, вставимо межі інтегрування:
∫(2x+1)³ dx = 2(1)⁴ + 4(1)³ + 3(1)² + (1) - (2(0)⁴ + 4(0)³ + 3(0)² + (0))
= 2 + 4 + 3 + 1 - 0 - 0 - 0 - 0
= 10.
Таким чином, значення інтегралу ∫(2x+1)³ dx від 0 до 1 дорівнює 10.
∫xⁿ dx = (xⁿ⁺¹)/(n+1) + C,
де n ≠ -1 і C - константа інтегрування.
Застосуємо цю формулу до кожного доданка у виразі (2x+1)³:
∫(2x+1)³ dx = ∫8x³ + 12x² + 6x + 1 dx
Застосуємо формулу для кожного доданка:
∫8x³ dx = (8/4)x⁴ = 2x⁴
∫12x² dx = (12/3)x³ = 4x³
∫6x dx = 6/2)x² = 3x²
∫1 dx = x
Тепер, обчислимо відповідний вираз для кожного доданка:
∫(2x+1)³ dx = 2x⁴ + 4x³ + 3x² + x
Щоб знайти значення від 0 до 1, вставимо межі інтегрування:
∫(2x+1)³ dx = 2(1)⁴ + 4(1)³ + 3(1)² + (1) - (2(0)⁴ + 4(0)³ + 3(0)² + (0))
= 2 + 4 + 3 + 1 - 0 - 0 - 0 - 0
= 10.
Таким чином, значення інтегралу ∫(2x+1)³ dx від 0 до 1 дорівнює 10.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Щоб обчислити цей інтеграл, ми можемо застосувати формулу підстановки. Спочатку розглянемо підстановку:
Припустимо, що u = 2x + 1. Тоді можна записати dx = du/2.
Змінюємо межі інтегрування:
Коли x = 0, u = 2(0) + 1 = 1. Коли x = 1, u = 2(1) + 1 = 3.
Тепер ми можемо переписати інтеграл з урахуванням підстановки:
∫[0,1] (2x + 1)³ dx = ∫[1,3] u³ (du/2)
Ділимо кожен член під інтегралом на 2:
(1/2) ∫[1,3] u³ du
Застосовуємо формулу для інтегрування степеневої функції:
(1/2) * [(u^4)/4] + C
Підставляємо верхню та нижню межі:
= (1/2) * [(3^4)/4] - (1/2) * [(1^4)/4] + C
= (1/2) * (81/4) - (1/2) * (1/4) + C
= 81/8 - 1/8 + C
= 80/8 + C
= 10 + C
Таким чином, остаточний результат інтегрування даної функції є 10 + C, де C - це довільна константа.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili