
Arccos (-√2/2) + arcsin (-0,5)


Ответы на вопрос

Отметьте пожалуйста лучшим решением и поставьте сердечко




Ответ:
Пошаговое объяснение:
=3П/4 +(-П/6)=9П/12 -2П/12=7П/12



To evaluate the expression arccos(-√2/2) + arcsin(-0.5), we can use the properties of trigonometric functions.
First, let's determine the values of arccos(-√2/2) and arcsin(-0.5).
arccos(-√2/2) represents the angle whose cosine is equal to -√2/2. Since -√2/2 is the cosine value for the angle π/4 (45 degrees) in the fourth quadrant, we have:
arccos(-√2/2) = π/4
arcsin(-0.5) represents the angle whose sine is equal to -0.5. Since -0.5 is the sine value for the angle -π/6 (-30 degrees) in the third quadrant, we have:
arcsin(-0.5) = -π/6
Now, we can substitute these values into the original expression:
arccos(-√2/2) + arcsin(-0.5) = π/4 + (-π/6)
To simplify the expression, we need to find a common denominator for π/4 and -π/6. The common denominator is 12, so we can rewrite the expression as:
arccos(-√2/2) + arcsin(-0.5) = (3π/12) + (-2π/12)
Combining the terms, we get:
arccos(-√2/2) + arcsin(-0.5) = (3π - 2π)/12
Simplifying the numerator, we have:
arccos(-√2/2) + arcsin(-0.5) = π/12
Therefore, the value of the expression arccos(-√2/2) + arcsin(-0.5) is π/12 (approximately 0.2618).



To calculate the value of the expression arccos(-√2/2) + arcsin(-0.5), we can use the properties of inverse trigonometric functions and the values of trigonometric ratios.
Let's break it down step by step:
arccos(-√2/2): The value -√2/2 represents the cosine of an angle. We need to find the angle whose cosine is -√2/2. From the unit circle, we know that the cosine is negative in the second and third quadrants. In the second quadrant, the angle whose cosine is -√2/2 is 3π/4 (or 135 degrees).
arcsin(-0.5): The value -0.5 represents the sine of an angle. We need to find the angle whose sine is -0.5. From the unit circle, we know that the sine is negative in the third and fourth quadrants. In the third quadrant, the angle whose sine is -0.5 is -7π/6 (or -210 degrees).
Now, we can calculate the expression:
arccos(-√2/2) + arcsin(-0.5) = 3π/4 + (-7π/6)
To simplify this, we need to find a common denominator:
3π/4 + (-7π/6) = (9π/12) + (-14π/12)
Combining the terms:
= (9π - 14π) / 12 = -5π / 12
So, the value of the expression arccos(-√2/2) + arcsin(-0.5) is -5π/12.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili