
Решить lim x->0 (sin7x+sin3x)/x*sinx


Ответы на вопрос




To solve the limit of the expression as x approaches 0, we can use the properties of limits and trigonometric identities. Let's break down the expression step by step:
lim(x->0) [(sin(7x) + sin(3x)) / (x * sin(x))]
Step 1: Apply the trigonometric identity sin(a + b) = sin(a)cos(b) + cos(a)sin(b) to the numerator:
= lim(x->0) [(sin(7x)cos(3x) + cos(7x)sin(3x)) / (x * sin(x))]
Step 2: Rearrange the terms in the numerator:
= lim(x->0) [(sin(7x)cos(3x) + sin(3x)cos(7x)) / (x * sin(x))]
Step 3: Apply the trigonometric identity sin(2a) = 2sin(a)cos(a) to the numerator:
= lim(x->0) [2sin(7x)cos(3x) + 2sin(3x)cos(7x)] / (x * sin(x))
Step 4: Apply the limit properties and break down the expression further:
= lim(x->0) 2sin(7x)cos(3x) / (x * sin(x)) + lim(x->0) 2sin(3x)cos(7x) / (x * sin(x))
Step 5: Simplify each term separately:
lim(x->0) [2sin(7x)cos(3x) / (x * sin(x))] = = 2 * lim(x->0) [sin(7x)cos(3x) / (x * sin(x))]
lim(x->0) [2sin(3x)cos(7x) / (x * sin(x))] = = 2 * lim(x->0) [sin(3x)cos(7x) / (x * sin(x))]
Step 6: Apply the limit properties again:
= 2 * lim(x->0) [sin(7x) / x] * lim(x->0) [cos(3x) / sin(x)]
- 2 * lim(x->0) [sin(3x) / x] * lim(x->0) [cos(7x) / sin(x)]
Step 7: Evaluate each limit separately:
lim(x->0) [sin(7x) / x] = 7 (using the limit definition of sin(x) / x)
lim(x->0) [cos(3x) / sin(x)] = cos(0) / sin(0) = 1
lim(x->0) [sin(3x) / x] = 3 (using the limit definition of sin(x) / x)
lim(x->0) [cos(7x) / sin(x)] = cos(0) / sin(0) = 1
Step 8: Substitute the values back into the expression:
= 2 * 7 * 1 + 2 * 3 * 1 = 14 + 6 = 20
Therefore, the limit of (sin(7x) + sin(3x)) / (x * sin(x)) as x approaches 0 is 20.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili