
5*4^x -7*10^x +2*25^x=0


Ответы на вопрос

Ответ: 0; 1



To solve this equation, we can notice that each term contains a power of a different base (4, 10, and 25), which makes it difficult to solve directly. However, we can use a change of variable to simplify the equation.
Let's substitute y = 2^x. Then, we have:
5y^2 - 710^(log10(y)/log10(2)) + 2*25^(log25(y)/log5(2)) = 0
Notice that we can use logarithmic identities to simplify the exponents in the second and third terms:
10^(log10(y)/log10(2)) = 2^(log2(10)log10(y)/log2(10)) = y^(log2(10)) 25^(log25(y)/log5(2)) = (5^2)^(log5(y)/log5(2)) = y^(2log5(5))
Substituting these into the equation, we get:
5y^2 - 7y^(log2(10)) + 2y^(2log5(5)) = 0
Now, let's substitute z = y^(log2(10)). Then, we have:
y^2 = z^(log10(2)) y^(2log5(5)) = z^(2log10(5))
Substituting these into the equation, we get:
5z^(2log10(2)) - 7z + 2z^(2*log10(5)) = 0
This is a quadratic equation in z, which we can solve using the quadratic formula:
z = [7 ± sqrt(7^2 - 452^(2log10(5)))] / (25)
z = [7 ± sqrt(49 - 40*log10(5))] / 10
z ≈ 0.704 or z ≈ 1.448
Now, we can substitute back for y and solve for x:
y = z^(1/log2(10))
x = log2(y) = log2(z^(1/log2(10))) = (1/log2(10))*log2(z)
x ≈ -0.398 or x ≈ 0.654
Therefore, the solutions to the equation 54^x -710^x +2*25^x=0 are approximately x = -0.398 and x = 0.654.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili