
1/2+1/6+1/12+20+...+1/9900=0.99


Ответы на вопрос

Я все проверил, решение верное



To solve this problem, we need to first find a pattern in the given sequence of fractions. Notice that the denominators of the fractions are in the form of 2^k and 3^k for k = 1, 2, 3, ..., 7. This suggests that we can write the sum as follows:
1/2 + 1/6 + 1/12 + ... + 1/2^7 + 20 + ... + 1/9900
= (1/2 + 1/4 + 1/8 + ... + 1/2^7) + (1/3 + 1/9 + 1/27 + ... + 1/3^5) + 20 + ... + 1/9900
= (1 - 1/2^8) + (1 - 1/3^6) + 20 + ... + 1/9900
= 1 - 1/2^8 + 1 - 1/3^6 + 20 + ... + 1/9900
= 22 - (1/2^8 + 1/3^6 + ... + 1/1650)
Now, we need to find the sum of the remaining terms:
1/2^8 + 1/3^6 + ... + 1/1650
To do this, we can use the formula for the sum of a geometric series:
S = a(1 - r^n)/(1 - r)
where a is the first term, r is the common ratio, n is the number of terms.
In this case, a = 1/2^8, r = 1/2 or 1/3 or ..., and n = the number of terms.
Using this formula, we can find the sum of the remaining terms:
1/2^8 + 1/3^6 + ... + 1/1650
= (1/2^8)(1 - (1/2)^6)/(1 - 1/2) + (1/3^6)(1 - (1/3)^5)/(1 - 1/3) + ... + (1/11^3)(1 - (1/11)^2)/(1 - 1/11)
= 0.0036466...
Substituting this value into our original equation, we get:
22 - 0.0036466... = 21.9963534...
So the given equation is not true. The sum of the given sequence is approximately 21.9964, not 0.99.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili