Вопрос задан 12.04.2021 в 01:08. Предмет Математика. Спрашивает Караблёва Лиза.

(5х-2) в квадрате (1-3у) в квадрате (4х( икс в 3 степени) +5) в квадрате помогите решить

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Самойлова Евгения.

(5х-2)^2=25х^2-10х+4

(1-3у)^2=1-6у+9у^2

(4х^3 +5)^2=16х^6+40х^3+25

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы раскрыть скобки, нужно использовать формулу квадрата суммы:

(a + b)^2 = a^2 + 2ab + b^2

Также можно использовать формулу квадрата разности:

(a - b)^2 = a^2 - 2ab + b^2

Используя эти формулы, мы можем раскрыть скобки в данном выражении. Давайте начнем с квадрата разности (5х - 2)^2:

(5x - 2)^2 = (5x)^2 - 2 * 5x * 2 + 2^2 = 25x^2 - 20x + 4

Теперь раскроем квадрат разности (1 - 3у)^2:

(1 - 3у)^2 = (1)^2 - 2 * 1 * 3у + (3у)^2 = 1 - 6у + 9у^2

Наконец, раскроем квадрат суммы (4х( икс в 3 степени) +5)^2:

(4х^3 + 5)^2 = (4х^3)^2 + 2 * 4х^3 * 5 + 5^2 = 16х^6 + 40х^3 + 25

Теперь, чтобы получить итоговый ответ, нужно перемножить полученные выражения. Для удобства мы можем заменить 4х^3 на переменную а:

(25x^2 - 20x + 4) * (1 - 6у + 9у^2) * (a + 5)^2, где a = 4х^3

Тогда мы получим:

(25x^2 - 20x + 4) * (1 - 6у + 9у^2) * (a^2 + 10a + 25) = (25x^2 - 20x + 4) * (9у^2 - 6у + 1) * (16х^6 + 40х^3 + 25)

Можно дальше упростить этот многочлен, но это уже зависит от того, для каких целей он вам нужен.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос