
X^2-2x-3<0...........


Ответы на вопрос

x второй =-1



To solve the quadratic inequality x^2 - 2x - 3 < 0, we can use a combination of factoring and the sign of the quadratic expression.
First, let's factor the quadratic expression:
x^2 - 2x - 3 = (x - 3)(x + 1)
Now, we can find the critical points by setting each factor equal to zero:
x - 3 = 0 => x = 3 x + 1 = 0 => x = -1
These critical points divide the number line into three intervals: (-∞, -1), (-1, 3), and (3, +∞).
Next, we test a point within each interval to determine the sign of the quadratic expression:
For x = -2 (within the interval (-∞, -1)): (x - 3)(x + 1) = (-2 - 3)(-2 + 1) = (-5)(-1) = 5 Since 5 > 0, the expression is positive in the interval (-∞, -1).
For x = 0 (within the interval (-1, 3)): (x - 3)(x + 1) = (0 - 3)(0 + 1) = (-3)(1) = -3 Since -3 < 0, the expression is negative in the interval (-1, 3).
For x = 4 (within the interval (3, +∞)): (x - 3)(x + 1) = (4 - 3)(4 + 1) = (1)(5) = 5 Since 5 > 0, the expression is positive in the interval (3, +∞).
From the above analysis, we can conclude that the solution to the inequality x^2 - 2x - 3 < 0 is the interval (-1, 3).
In interval notation, the solution can be written as (-1, 3).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili