
4\7=8+2а\215/12=30\44+7а.


Ответы на вопрос





To solve the equation:
4/7 = 8 + (2a/215) / (12/30) = 30 / (44 + 7a)
First, let's simplify the equation by multiplying both sides by the denominators to eliminate the fractions:
(4/7) * (12/30) = (8 + 2a/215) * (30 / (44 + 7a))
Simplifying further:
(4/7) * (12/30) = (8 * 30) / (44 + 7a) + (2a/215) * (30 / (44 + 7a))
Now, let's simplify the left side:
(4/7) * (12/30) = (4/7) * (2/5) = 8/35
And the right side:
(8 * 30) / (44 + 7a) + (2a/215) * (30 / (44 + 7a)) = (240 / (44 + 7a)) + (2a/215) * (30 / (44 + 7a))
Combining the fractions on the right side:
= (240 + (2a/215) * 30) / (44 + 7a) = (240 + (60a/215)) / (44 + 7a)
Now we can set the left and right side equal to each other:
8/35 = (240 + (60a/215)) / (44 + 7a)
To solve for 'a', we can cross-multiply:
(8/35) * (44 + 7a) = 240 + (60a/215)
Expanding and simplifying:
(8/35) * 44 + (8/35) * 7a = 240 + (60a/215)
(352/35) + (56/35)a = 240 + (60a/215)
Now, let's combine the 'a' terms on one side and the constant terms on the other side:
(56/35)a - (60a/215) = 240 - (352/35)
Multiplying through by the least common denominator, which is 1505:
(1505 * (56/35)a - 1505 * (60a/215)) = 1505 * (240 - (352/35))
Simplifying:
(215 * 56a - 35 * 60a) = 1505 * (8400 - 352)
(12040a - 2100a) = 1505 * (8048)
Now, we can solve for 'a':
9840a = 12168440
a = 12168440 / 9840
a ≈ 1236.93
Therefore, the approximate value of 'a' that satisfies the equation is approximately 1236.93.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili