
6sin^2x=5sin(3pi/2-x)+2


Ответы на вопрос





To solve the equation 6sin^2x = 5sin(3π/2 - x) + 2, we'll start by simplifying the right side:
Using the angle difference identity sin(3π/2 - x) = sin(3π/2)cos(x) - cos(3π/2)sin(x) = -cos(x)
Now, the equation becomes:
6sin^2x = 5(-cos(x)) + 2
Let's rearrange the equation:
6sin^2x = -5cos(x) + 2
Now, we'll apply the Pythagorean identity sin^2(x) + cos^2(x) = 1 to express sin^2(x) in terms of cos(x):
6(1 - cos^2(x)) = -5cos(x) + 2
Expand and rearrange the equation:
6 - 6cos^2(x) = -5cos(x) + 2
Rearrange again:
6cos^2(x) - 5cos(x) + 4 = 0
Now, we have a quadratic equation in terms of cos(x). We can solve it by factoring or using the quadratic formula. However, this equation doesn't factor nicely, so let's use the quadratic formula:
cos(x) = [-(-5) ± √((-5)^2 - 4(6)(4))] / (2(6))
Simplifying:
cos(x) = [5 ± √(25 - 96)] / 12
cos(x) = [5 ± √(-71)] / 12
Since we have a negative value inside the square root, there are no real solutions for cos(x) in this equation. Therefore, the original equation 6sin^2x = 5sin(3π/2 - x) + 2 does not have any real solutions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili