
Lim┬(n→∞)〖(∜(x^5+2)-∛(x^2+1))/(√(5&x^4+2)-√(x^3+1))〗


Ответы на вопрос

Ответ:
345
Пошаговое объяснение:



To evaluate the limit of the expression as n approaches infinity:
Lim┬(n→∞)〖(∜(x^5+2)-∛(x^2+1))/(√(5&x^4+2)-√(x^3+1))〗
Let's simplify the expression step by step:
First, we'll deal with the numerator: ∜(x^5+2) = (√(x^5+2))^(1/4) = ((x^5+2)^(1/2))^(1/4) = ((x^5+2)^(1/2))^(1/4) = (x^5+2)^(1/8)
∛(x^2+1) = (x^2+1)^(1/3)
Now let's simplify the denominator: √(5x^4+2) = (√(5x^4+2)) = (√(5(x^4+2/5))) = (√(5)√(x^4+2/5)) = (√(5))((x^4+2/5)^(1/2)) = (√(5))((x^4)^(1/2))(2/5)^(1/2) = (√(5))(x^2)(√(2/5))
√(x^3+1) = (x^3+1)^(1/2)
Now let's substitute these simplified expressions back into the original expression:
Lim┬(n→∞)〖(∜(x^5+2)-∛(x^2+1))/(√(5&x^4+2)-√(x^3+1))〗
= Lim┬(n→∞)〖((x^5+2)^(1/8) - (x^2+1)^(1/3))/((√(5))(x^2)(√(2/5)) - (x^3+1)^(1/2))〗
Now, as n approaches infinity, we need to check the exponents of the highest powers of x in the numerator and denominator. We'll focus on those terms since they will dominate the expression:
For the numerator:
- The highest power of x is x^5.
For the denominator:
- The highest power of x is x^3.
Since the exponent of x is larger in the numerator, we can conclude that the limit as n approaches infinity will be ∞ or undefined.
Therefore, the limit of the given expression as n approaches infinity does not exist or is infinite (∞).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili