Вопрос задан 28.02.2021 в 06:11. Предмет Математика. Спрашивает Galkina Karina.

Плоскости a и b пересекаются по прямой с, в данных плоскостях проведены отрезки АМ и ВМ,

перпендикулярные прямой с.Найдите АМ, если АВ = ВМ = 2 дм, а угол между плоскостями равен 60 градусов 
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шарапова Лена.
По определению угла между двумя плоскостями угол АМВ=60 и есть этот угол. В треугольнике АМВ АВ=ВМ=2 и угол АМВ=60, те тр-к АМВ равнобедренный, угол при основании АМ равен 60, тогда по св-ау равнобедренного тр-ка и угол ВАМ=60. Сумма углов тр-ка 180, тогда и угол АВМ=60, т.о. Тр-к равносторонний и АМ=2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, воспользуемся свойством пересекающихся плоскостей и треугольника МАВ. Давайте разберемся пошагово.

  1. Угол между плоскостями a и b равен 60 градусов. Поскольку прямая с перпендикулярна отрезкам АМ и ВМ, то плоскости a и b должны быть перпендикулярны к этой прямой.

  2. Рассмотрим треугольник МАВ. У нас известно, что АВ = ВМ = 2 дм.

  3. Так как плоскости a и b пересекаются по прямой с, то отрезки АМ и ВМ должны быть перпендикулярными к прямой с. Это означает, что треугольник МАВ является равнобедренным треугольником.

  4. В равнобедренном треугольнике, медиана, проведенная к основанию, является высотой, а также делит основание пополам.

  5. Таким образом, отрезок АМ должен быть равным половине отрезка АВ. Значит, АМ = АВ / 2 = 2 дм / 2 = 1 дм.

Итак, длина отрезка АМ равна 1 дм.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос