
(x+1)(x-4)+4>(x+2)(x-3)x


Ответы на вопрос

2х-8>3х-3х
2х-8>0



Let's solve the given inequality step by step:
(x + 1)(x - 4) + 4 > (x + 2)(x - 3)x
Expanding the expressions on both sides:
(x^2 - 3x - 4) + 4 > (x^2 - x - 6)x
Simplifying further:
x^2 - 3x > x^3 - x^2 - 6x
Rearranging terms and setting the inequality to zero:
x^3 - x^2 - 6x - x^2 + 3x + 6x > 0
Combining like terms:
x^3 - 2x^2 + 3x > 0
Now, we can factor the expression:
x(x^2 - 2x + 3) > 0
The quadratic equation x^2 - 2x + 3 does not factor nicely, so we can use the quadratic formula to find its roots:
x = (-b ± √(b^2 - 4ac)) / (2a)
For this equation, a = 1, b = -2, and c = 3. Substituting the values into the formula:
x = (2 ± √((-2)^2 - 4(1)(3))) / (2(1)) x = (2 ± √(4 - 12)) / 2 x = (2 ± √(-8)) / 2
Since the discriminant (b^2 - 4ac) is negative, there are no real solutions for this quadratic equation. Therefore, the expression x^2 - 2x + 3 is always positive, and the inequality becomes:
x(x^2 - 2x + 3) > 0
Since the product of two numbers is greater than zero only when both numbers have the same sign (either both positive or both negative), we need to consider two cases:
x > 0: In this case, the inequality holds true when x > 0.
x < 0: In this case, the inequality holds true when x < 0.
Therefore, the solution to the given inequality is:
x > 0 or x < 0


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili