(x+1)(x-4)+4>(x+2)(x-3)x
Ответы на вопрос
        2х-8>3х-3х
2х-8>0
            Let's solve the given inequality step by step:
(x + 1)(x - 4) + 4 > (x + 2)(x - 3)x
Expanding the expressions on both sides:
(x^2 - 3x - 4) + 4 > (x^2 - x - 6)x
Simplifying further:
x^2 - 3x > x^3 - x^2 - 6x
Rearranging terms and setting the inequality to zero:
x^3 - x^2 - 6x - x^2 + 3x + 6x > 0
Combining like terms:
x^3 - 2x^2 + 3x > 0
Now, we can factor the expression:
x(x^2 - 2x + 3) > 0
The quadratic equation x^2 - 2x + 3 does not factor nicely, so we can use the quadratic formula to find its roots:
x = (-b ± √(b^2 - 4ac)) / (2a)
For this equation, a = 1, b = -2, and c = 3. Substituting the values into the formula:
x = (2 ± √((-2)^2 - 4(1)(3))) / (2(1)) x = (2 ± √(4 - 12)) / 2 x = (2 ± √(-8)) / 2
Since the discriminant (b^2 - 4ac) is negative, there are no real solutions for this quadratic equation. Therefore, the expression x^2 - 2x + 3 is always positive, and the inequality becomes:
x(x^2 - 2x + 3) > 0
Since the product of two numbers is greater than zero only when both numbers have the same sign (either both positive or both negative), we need to consider two cases:
x > 0: In this case, the inequality holds true when x > 0.
x < 0: In this case, the inequality holds true when x < 0.
Therefore, the solution to the given inequality is:
x > 0 or x < 0
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			