
НОК(15,20) НОК(36,25)


Ответы на вопрос

НОК 36 25. 900



To find the least common multiple (LCM) of two numbers, you can use the formula:
LCM(a, b) = (a * b) / GCD(a, b)
where a and b are the numbers for which you want to find the LCM, and GCD(a, b) represents the greatest common divisor of a and b.
Let's calculate the LCM for the given numbers:
- LCM(15, 20): To find the LCM of 15 and 20, we first need to find their GCD.
GCD(15, 20): To find the GCD, we can use the Euclidean algorithm.
20 = 15 * 1 + 5 15 = 5 * 3 + 0
Since the remainder is 0, the GCD(15, 20) = 5.
Now, we can calculate the LCM using the formula:
LCM(15, 20) = (15 * 20) / GCD(15, 20) = (15 * 20) / 5 = 300 / 5 = 60
Therefore, the LCM of 15 and 20 is 60.
- LCM(36, 25): Again, we need to find the GCD of 36 and 25.
GCD(36, 25): Using the Euclidean algorithm:
36 = 25 * 1 + 11 25 = 11 * 2 + 3 11 = 3 * 3 + 2 3 = 2 * 1 + 1 2 = 1 * 2 + 0
The remainder is 0, so the GCD(36, 25) = 1.
Now, let's calculate the LCM:
LCM(36, 25) = (36 * 25) / GCD(36, 25) = (36 * 25) / 1 = 900
Therefore, the LCM of 36 and 25 is 900.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili