Вопрос задан 12.06.2018 в 00:10. Предмет Геометрия. Спрашивает Филипенко Женя.

диагональ правильной четырехугольной призмы наклонена к плоскости основания под углом 60 градусов.

найти площадь сечения,проходящего через сторону нижнего основания и противолежащую сторону верхнего основания,если диагональ основания равна четыре корня из двух
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сайнова Ару.

Цитата: "Правильная призма - это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы - равные прямоугольники.
Так как призма правильная, то в основании ее лежит квадрат."

Итак, квадрат диагонали основания  равен по Пифагору сумме квадратов сторон, то есть 32 = 2Х², где Х - сторона основания (квадрата),  отсюда сторона основания Х = 4.

В прямоугольном тр-ке против угла 30° лежит катет, равный половине гипотенузы. Значит диагональ призмы равна 2*4√2 = 8√2. Квадрат высоты призмы равен квадрату диагонали призмы минус квадрат диагонали основания, то есть (8√2)² - (4√2)² = 96.

Диагональ боковой грани призмы равна корню квадратному из суммы квадратов высоты и стороны основания, то есть √(96+16) =√112. Площадь искомого сечения равна произведению стороны основания на диагональ грани, то есть 4*√112 = 4*√16*7 =16√7.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос