Вопрос задан 01.08.2020 в 18:23. Предмет Геометрия. Спрашивает Лычкина Арина.

Доказать что: в равнобедренном треугольнике две медианы равны, две биссектрисы равны. Пожалуйста!!!!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Раимбаева Луиза.
1) ∠BAK = ∠KAC = ∠OCA = ∠OCK, т.к. ∠A = ∠C, и СО и КА — биссектриссы. В ΔAKB и ΔСОВ: АВ = ВС (т.к. ΔАВС — равнобедренный) ∠BAK = ∠BCO (т.к. АК и СО — биссектриссы равных углов). ∠B — общий. Таким образом, ΔAKB = ΔСОВ по 2-му признаку равенства треугольников.
0 0
Отвечает Шлык Петя.
Проведем медианы из углов при основании..Поскольку боковые стороны у равнобедренного треугольника равны, то медианы разделят их на равные части. Рассмотрим два образовавшихся треугольника, состоящих из медианы и основания. Они равны (по двум сторонам и углу между ними) следовательно третьи стороны (медианы) также равны

В равнобедренном треугольнике проведем высоту к основанию. Образуется два равных прямых треугольника.
Проведенные из углов при основании равнобедренного треугольника биссектрисы будут являться биссектрисами и прямоугольных треугольников, так как они равны, то равны и биссектрисы.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос