
Вопрос задан 07.06.2018 в 00:14.
Предмет Геометрия.
Спрашивает Лихачев Адель.
дан треугольник MNP угол N=64 градуса. NA-биссектриса треугольника MNP. через точку А проведена
прямая, пересекающая сторону NP в точке В. причём NB=AB. Доказать: MN II AB.

Ответы на вопрос

Отвечает Зорин Саша.
1). Треугольник NAB - равнобедренный, так как AB=NB;
2). угол ANB = углу NAB ( по свойсвтву равнобедренного треугольника - углы при основании равны);
3). угол MNA = углу ANB (Так как NA-биссектриса треугольника MNP)
4). угол ANB = угол MNP : 2 (Так как NA биссектриса треугольника MNP)
угол ANB = 64: 2 = 32 градуса
5). угол ANB = углу NAB = угол = MNA = 32 градусам ( из доказанного)
6). Из доказанного следует, что углу NAB = угол = MNA = 32 градусам, а углы NAB и MNA - накрест лежащие при пересечении прямых MN и AB и секущей NA. Следовательно MN||AB


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili