Вопрос задан 25.06.2020 в 21:40. Предмет Геометрия. Спрашивает Маевский Дима.

Диагонали плоского четырехугольника ABCD пересекаются в точке O. Из точки O проведены перпендикуляр

OM к прямой AB и перпендикуляр OK к плоскости четырехугольника. Докажите, что угол между прямыми MK и AB прямой. Найдите расстояние от точки B до плоскости OKM, если KM равно корень из 3, угол MKB равен 30 градусом.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Усербаева Наргиз.
Это задача на теорему о трех перпендикулярах: если KO⊥ плоскости, прямая лежит в этой плоскости, то основания перпендикуляров к этой прямой,
проведенных из точек K и O, совпадают. Поэтому MK⊥AB. Далее, так как BM⊥OM и KM, BM⊥плоскости OMK, поэтому BM даст нам расстояние от B до этой плоскости. BM ищется из прямоугольного треугольника BMK, в котором катет KM по условию равен √3, а угол против BM равен 30°:
BM=KM·tg 30°=√3·(√3/3)=1

Ответ: 1
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос