
Вопрос задан 25.06.2020 в 21:40.
Предмет Геометрия.
Спрашивает Маевский Дима.
Диагонали плоского четырехугольника ABCD пересекаются в точке O. Из точки O проведены перпендикуляр
OM к прямой AB и перпендикуляр OK к плоскости четырехугольника. Докажите, что угол между прямыми MK и AB прямой. Найдите расстояние от точки B до плоскости OKM, если KM равно корень из 3, угол MKB равен 30 градусом.

Ответы на вопрос

Отвечает Усербаева Наргиз.
Это задача на теорему о трех перпендикулярах: если KO⊥ плоскости, прямая лежит в этой плоскости, то основания перпендикуляров к этой прямой,
проведенных из точек K и O, совпадают. Поэтому MK⊥AB. Далее, так как BM⊥OM и KM, BM⊥плоскости OMK, поэтому BM даст нам расстояние от B до этой плоскости. BM ищется из прямоугольного треугольника BMK, в котором катет KM по условию равен √3, а угол против BM равен 30°:
BM=KM·tg 30°=√3·(√3/3)=1
Ответ: 1
проведенных из точек K и O, совпадают. Поэтому MK⊥AB. Далее, так как BM⊥OM и KM, BM⊥плоскости OMK, поэтому BM даст нам расстояние от B до этой плоскости. BM ищется из прямоугольного треугольника BMK, в котором катет KM по условию равен √3, а угол против BM равен 30°:
BM=KM·tg 30°=√3·(√3/3)=1
Ответ: 1


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili