Вопрос задан 06.06.2018 в 02:33. Предмет Геометрия. Спрашивает Силянков Артём.

Дан прямоугольный треугольник АВС с катетами ВС = 3 и АС = 4. Ромб ВDЕF расположен в треугольнике

АВС, вершина В общая, а остальные три вершины ромба лежат на трёх сторонах треугольника АВС. Найти сторону ромба
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Галай Юля.

Большая диагональ ромба является биссектрисой угла В.
Гипотенуза треугольника равна √(3²+4²) =√25 = 5.
Длину биссектрисы угла В находим по формуле:
mb = (2/(a+c))*√(acp(p-b))/
Полупериметр р = (3+4+5)/2 = 12/2 = 6.
mb = (2*(3+5))*√(3*5*6*(6-4)) = (2/8)*√180 = (1/4)*6√5 = (3/2)*√5.
Диагонали ромба пересекаются под прямым углом и точкой пересечения О делятся пополам.
Из прямоугольного треугольника BFO находим сторону ромба BF:
BF = ВО / cos (B/2)/
cos B = 3/5.
cos(B/2) = √((1+cos B)/2) = √(1+(3/5))/2) = √(8/10) = √(4/5) = 2/√5.
Тогда BF = (((3/2)*√5)/2) / (2/√5) = (3√5*√5) / (4*2) = 15 / 8 = 1,875.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос