Вопрос задан 15.06.2020 в 21:00. Предмет Геометрия. Спрашивает Суфьянов Азим.

стороны прямоугольного треугольника равны 6; 8 и 10. найдите расстояние между центрами вписанной в

него и описанной около него окружностей.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Степанов Алексей.
Радиус описанной вокруг прямоугольного треугольника окружности равен половине гипотенузы:
R=с:2
R=10:2=5
Радиус вписанной в прямоугольный треугольник окружности равен половине разности между суммой катетов и гипотенузой:
r=(а+b-с):2
r=(6+8-10):2=2
Рассмотрим рисунок. 
Центр описанной окружности О1, центр вписанной - О. 
СН=r
AO1=O1B=R
O1K=R-KB
KB=CB-CH
KB=6-2=4
O1K=5-4=1
Из прямоугольного треугольника ОКО1 найдем расстояние ОО1 по т.Пифагора:
ОО1=√(4+1)=√5
Ответ: искомое расстояние равно √5
------

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос