Вопрос задан 04.06.2020 в 10:44. Предмет Геометрия. Спрашивает Исмаилов Руслан.

В прямоугольнике ABCD со сторонами AB=4 дм, AD=8 проведены биссектрисы двух углов, прилежащих к

большей стороне. Определите, на какие части делится площадь прямоугольника этими биссектрисами.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Евгений.
Площадь прямоугольника: S = 4 · 8 = 32дм²
Биссектрисы углов А и Д пересекаются в точке Е - середине стороны ВС и делят прямоугольник на три части:
1) ΔАВЕ с площадью S1 = 0,5 ·4 · 4 = 8дм², что составляет 1/4 часть площади прямоугольника
2)ΔДСЕ с площадью S2 = 0,5 ·4 · 4 = 8дм², что составляет 1/4 часть площади прямоугольника
3) ΔАЕД с площадью S3 = 0,5 ·8 · 4 = 16дм², что составляет 1/2 часть площади прямоугольника


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос